
WebAssembly
(WASM) Workloads
Bacalhau supports running programs that are compiled to

WebAssembly (WASM). With the Bacalhau client, you can

upload WASM programs, retrieve data from public storage,

read and write data, receive program arguments, and

access environment variables.

1. Supported WebAssembly System Interface (WASI)

Bacalhau can run compiled WASM programs that expect

the WebAssembly System Interface (WASI) Snapshot 1.

Through this interface, WebAssembly programs can

access data, environment variables, and program

arguments.

2. Networking Restrictions All ingress/egress networking

is disabled – you won't be able to pull

data/code/weights etc. from an external source.

WASM jobs can say what data they need using URLs or

Prerequisites and Limitations

Bacalhau Docs v.1.4.0

https://webassembly.org/
https://docs.bacalhau.org/

CIDs (Content IDentifier) and can then access the data

by reading from the filesystem.3. Single-Threading There is no multi-threading as WASI

does not expose any interface for it.

If your program typically involves reading from and writing

to network endpoints, follow these steps to adapt it for

Bacalhau:

1. Replace Network Operations: Instead of making HTTP

requests to external servers (e.g., example.com), modify

your program to read data from the local filesystem.

2. Input Data Handling: Specify the input data location in

Bacalhau using the --input flag when running the job.

For instance, if your program used to fetch data from

example.com , read from the /inputs folder locally, and

provide the URL as input when executing the Bacalhau

job. For example, --input http://example.com .

3. Output Handling: Adjust your program to output results

to standard output (stdout) or standard error (stderr
) pipes. Alternatively, you can write results to the

filesystem, typically into an output mount. In the case of

Onboarding Your Workload

Step 1: Replace network operations with
filesystem reads and writes

WASM jobs, a default folder at /outputs is available,

ensuring that data written there will persist after the job

concludes.

By making these adjustments, you can effectively transition

your program to operate within the Bacalhau environment,

utilizing filesystem operations instead of traditional network

interactions.

You can specify additional or different output mounts using

the -o flag.

You will need to compile your program to WebAssembly

that expects WASI. Check the instructions for your compiler

to see how to do this.

For example, Rust users can specify the wasm32-wasi

target to rustup and cargo to get programs compiled for

WASI WebAssembly. See the Rust example for more

information on this.

Step 2: Configure your compiler to
output WASI-compliant WebAssembly

Step 3: Upload the input data

https://docs.bacalhau.org/setting-up/workload-onboarding/index-3

Data is identified by its content identifier (CID) and can be

accessed by anyone who knows the CID. You can use either

of these methods to upload your data:

You can mount your data anywhere on your machine, and

Bacalhau will be able to run against that data

You can run a WebAssembly program on Bacalhau using the

bacalhau wasm run command.

Run Locally Compiled Program:

If your program is locally compiled, specify it as an

argument. For instance, running the following command will

upload and execute the main.wasm program:

Copy data from a URL to public storage

Pin Data to public storage

Copy Data from S3 Bucket to public storage.

bacalhau wasm run

bacalhau wasm run main.wasm

Step 4: Run your program

https://docs.bacalhau.org/setting-up/data-ingestion/from-url
https://docs.bacalhau.org/setting-up/data-ingestion/pin
https://docs.bacalhau.org/setting-up/data-ingestion/s3

The program you specify will be uploaded to a Bacalhau

storage node and will be publicly available.

Alternative Program Specification:

You can use a Content IDentifier (CID) for a specific

WebAssembly program.

Input Data Specification:

Make sure to specify any input data using --input flag.

This ensures the necessary data is available for the

program's execution.

You can give the WASM program arguments by specifying

them after the program path or CID. If the WASM program is

already compiled and located in the current directory, you

can run it by adding arguments after the file name:

bacalhau wasm run Qmajb9T3jBdMSp7xh2JruNrqg3hniCnM6E

bacalhau wasm run --input http://example.com

Program arguments

For a specific WebAssembly program, run:

Write your program to use program arguments to specify

input and output paths. This makes your program more

flexible in handling different configurations of input and

output volumes.

For example, instead of hard-coding your program to read

from /inputs/data.txt , accept a program argument that

should contain the path and then specify the path as an

argument to bacalhau wasm run :

Your language of choice should contain a standard way of

reading program arguments that will work with WASI.

You can also specify environment variables using the -e

flag.

bacalhau wasm run echo.wasm hello world

bacalhau wasm run Qmajb9T3jBdMSp7xh2JruNrqg3hniCnM6E

bacalhau wasm run prog.wasm /inputs/data.txt

$ bacalhau wasm run prog.wasm -e HELLO=world

Environment variables

See the Rust example for a workload that leverages

WebAssembly support.

If you have questions or need support or guidance, please

reach out to the Bacalhau team via Slack (#general

channel).

Previous

Docker Workloads

Next

Running Nodes

Examples

Support

https://docs.bacalhau.org/setting-up/workload-onboarding/index-3
https://bacalhauproject.slack.com/ssb/redirect
https://docs.bacalhau.org/getting-started/workload-onboarding/docker-workload-onboarding
https://docs.bacalhau.org/setting-up/running-node

